根据数据规模选择不同复杂度算法 & 取组合数的复杂度分析

按照一秒处理 1 0 8 10^{8} 108数据规模计算

复杂度数量级最大规模
O(logN)>> 10^20很大
O(N^1/2)10^1210^14
O(N)10^610^7
O(NlogN)10^510^6
O(N^2)10002500
O(N^3)100500
O(N^4)5050
O(2^N)2020
O(N!)910

re:
https://blog.csdn.net/weixin_34268843/article/details/92942097


关于组合数的复杂度

C n m = n ∗ ( n − 1 ) ∗ . . . ∗ ( n − ( m − 1 ) ) C_{n}^{m} = n*(n-1)*...*( n-(m-1) ) Cnm=n(n1)...(n(m1))

s = lim ⁡ n → ∞ C n m n m = lim ⁡ n → ∞ n ∗ ( n − 1 ) ∗ . . . ∗ ( n − ( m − 1 ) ) n ∗ n ∗ . . . ∗ n = lim ⁡ n → ∞ 1 ∗ ( 1 − 1 n ) ∗ . . . ∗ ( 1 − m − 1 n ) s = \lim_{n\to\infty } \frac{C_{n}^{m}}{n^{m}} = \lim_{n\to\infty } \frac{n*(n-1)*...*( n-(m-1) )}{n*n*...*n} = \lim_{n\to\infty }1*(1-\frac{1}{n})*...*( 1- \frac{m-1}{n}) s=nlimnmCnm=nlimnn...nn(n1)...(n(m1))=nlim1(1n1)...(1nm1)

当n>>m(远远大于)时候, s = 1 s = 1 s=1,此时看做是指数的复杂度
当n 相近m时候, s = 0 s = 0 s=0,此时复杂度小于指数复杂度

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页