机器学习复习笔记-华中科技大学

ML 同时被 2 个专栏收录
7 篇文章 0 订阅
19 篇文章 0 订阅

第二门有挂科风险的考试
上午刚考完
这门课程考核方式第一次改为考试
所以没有复习资料
还有一点记忆赶紧记录一下
明年重修的时候就有复习材料了
1月6日 孙院士和张院士补充了部分判断题

简答
1. 朴素贝叶斯和感知机基本思想与异同
2. 简述SVM
3.分类和回归的异同
4.硬约束的SVM和软约束的SVM在数据是线性可分的情形下结果有何异同


判断

MLE和MAP都是把θ当成随机变量
在逻辑回归模型里牛顿法一定会得到全局最优解
True Bayes…
AdaGard每一个feature都有独立的学习率
在训练集有小于10%的错误率 在测试集一定不会有100%的错误率
KNN在高维数据的低维流形下不能得到正确的结果

。。。其他的暂时想不起来了


计算&证明

1.使用最大似然估计最大的参数a
Y = a X + ϵ Y = aX + \epsilon Y=aX+ϵ
ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim N(0,\sigma^2) ϵN(0,σ2)
P ( Y ∣ X , a ) = 1 2 π σ e x p ( − ( Y − a X ) 2 2 σ 2 ) P(Y|X,a)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(Y-aX)^{2}}{2\sigma^{2}}) P(YXa)=2π σ1exp(2σ2(YaX)2)
数据 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , . . . , ( x n , y n ) } D=\{(x_{1},y_{1}), (x_{2},y_{2}), (x_{3},y_{3}), ..., (x_{n},y_{n}) \} D={(x1,y1),(x2,y2),(x3,y3),...,(xn,yn)}相互独立

2.使用3-NN算法求解
在5X5的网格中标出
标 记 为 0 = { ( 0 , 2 ) , . . . } 一 共 五 个 坐 标 标记为0=\{ (0,2),...\}一共五个坐标 0={(0,2)...}
标 记 为 1 = { ( 3 , 2 ) , . . . } 一 共 五 个 坐 标 标记为1=\{ (3,2),...\}一共五个坐标 1={(3,2)...}
1在网格中标出数据
2写出3-NN算法的具体过程
3标出不同标签的分类边界

3求一个一个感知机的分类超平面,并且预测 y t y_{t} yt
x 1 = ( 1 , 1 , 0 , 1 ) T , y 1 = + 1 x_{1}=(1,1,0,1)^{T},y_{1}=+1 x1=(1,1,0,1)T,y1=+1
x 2 = ( 0 , 0 , 1 , 1 ) T , y 2 = + 1 x_{2}=(0,0,1,1)^{T},y_{2}=+1 x2=(0,0,1,1)T,y2=+1
x 3 = ( 1 , 1 , 0 , 0 ) T , y 3 = − 1 x_{3}=(1,1,0,0)^{T},y_{3}=-1 x3=(1,1,0,0)T,y3=1
x 4 = ( 0 , 0 , 0 , 1 ) T , y 4 = − 1 x_{4}=(0,0,0,1)^{T},y_{4}=-1 x4=(0,0,0,1)T,y4=1
x t = ( 0 , 1 , 0 , 1 ) T , y t = ? x_{t}=(0,1,0,1)^{T},y_{t}=? xt=(0,1,0,1)T,yt=?
具体的数据可能有错误

  • 0
    点赞
  • 2
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值